TPM Access Utilities

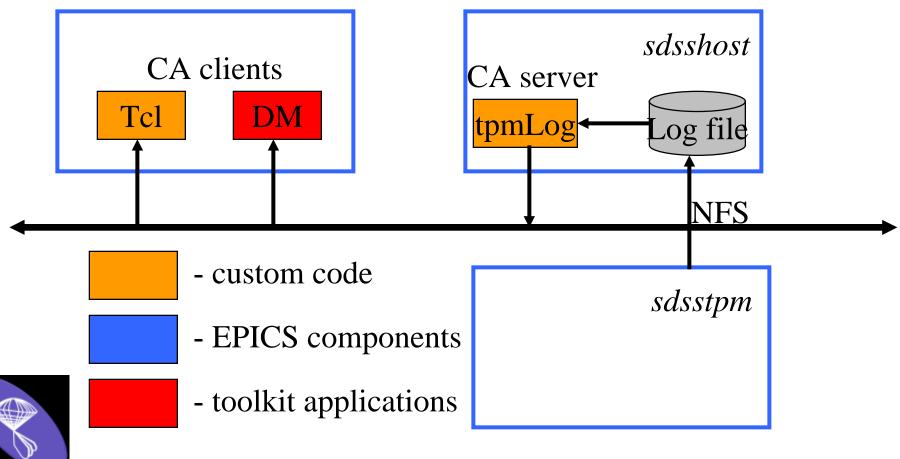
Peregrine M. McGehee Los Alamos National Laboratory

TPM: Primary source of telescope data

- The Sloan Digital Sky Survey's Telescope Performance Monitor serves out engineering data obtained from the Mount Control Computer.
- This data is presently written into a file on a workstation via NFS.
- Problem: How to examine the data?
- Solution: The standard EPICS toolkit is used to provide network-based access to both archived and real-time TPM data.

Overview of EPICS

- The Experimental Physics and Industrial Control System (EPICS) toolkit is the product of an on-going collaboration at over 100 international sites including many accelerator facilities and astronomical observatories.
- The EPICS toolkit creates a client-server architecture on the control system with communication handled by the channel access (CA) protocol.
- Channel access maintains a global name space of process variables within the local Internet sub-net.
- Clients and servers can exist on vxWorks, UNIX, and Win32 platforms.



EPICS access to TPM data

- Solution 1: Create a custom workstation-based CA server that reads TPM log files.
- Solution 2: Create an EPICS database resident on the TPM IOC (Input-Output Controller) and serve live data using the supplied vxWorks-based CA server.
- Tools used:
 - EDD/DM: X-Windows based display editor and manager
 - StripTool: Generic stripchart tool with printing and export features
 - et_wish: merger of Tcl, Tk, Tcl-DP, and BLT with channel access client library
 - dct313: Tcl/Tk based real-time database creation tool

Solution 1: Logfile access

Server architecture

- The toolkit supplied standard C++ base classes for server/network protocol and for the concept of a process variable.
- Custom C++ code needed to implement server and to create and associate named process variables with the underlying data store (the TPM log files).
- The server maps channel access get, put, and monitor commands onto TPM log file actions.

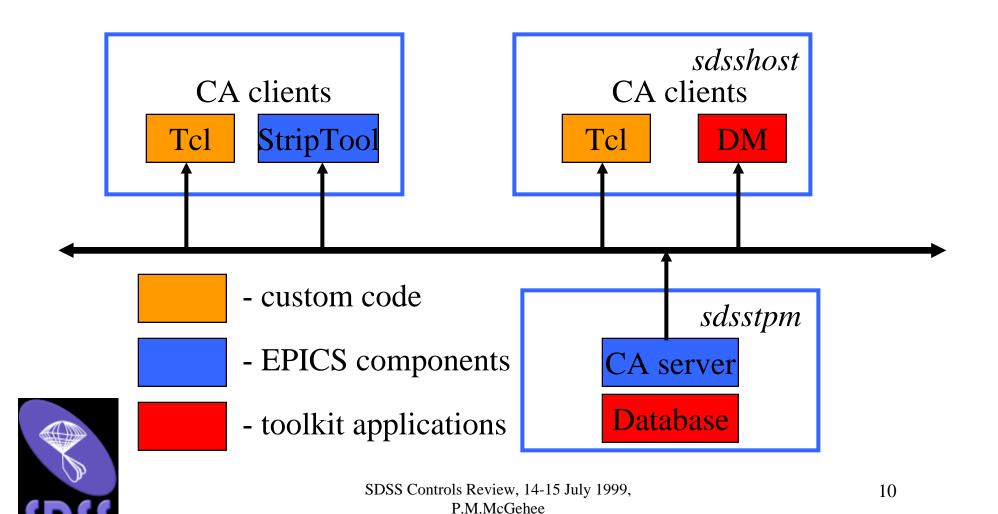
Server overview

- The client application can instruct the server to open a specific TPM log file.
- Once the file is open, the server can be queried to return information about the log file such as the sample rate and the number of registers archived.
- The client can determine what portion of the log file is read into the server's memory by specifying the start and end times from the start of the file.
- The time-series data is returned as a sequence of frames. The server supports the assignment of any TPM register including the timestamps to a "X" channel or any of four "Y" channels. Thus, plots of up to four registers against any other register are possible.

Custom server functions

- Open the named file
- Specify start and end time from beginning of file in seconds
- Initiate data reload
- Get the reload status
- Get the file sample rate
- Get number of registers in file

- Set frame size in samples
- Set the current frame number
- Set the X Register index
- Set the Y1-Y4 Register indices
- Get the current X Register frame
- Get the current Y1-Y4 Register frames


Two major client applications

- The user interface to the TPM log file data is implemented using a combination of two EPICS tools, DM and et_wish.
- EDD/DM provides the primary operator interface used to control the server configuration.
 - Opening the log file.
 - Loading data into memory
 - Specifying the registers to be returned
- The et_wish application is used to produce BLT graph widgets with interactive zooming.

 Reads the "X" and the four "Y" process variables that are mapped to registers.

Solution 2: Real-time access

Real-time database is modular

- Channel access sees **Record.Field** as a single process variable and is not dependent on the database.
- Records come in standard types: binary in/out, analog in/out, calculation, waveforms, motor control, and many more.
- Records are processed on demand, at regular rates, by interrupts, or as the result of other records processing.
- Records can be linked together for input, output, and processing chains.
- Device support maps the record functionality into underlying device driver calls. This is typically a very thin layer.

The device drivers provide access to the physical I/O devices.

Real-time database functions

- SUBROUTINE record
 - Generic wrapper around user C code
 - Accesses shared memory and writes data into global vxWorks symbols
 - Scanned at 5Hz
- CALCULATION records
 - Computes axis position in degrees
 - Computes up-time

- LONGIN records
 - Uses EPICS vxWorks symbolic device support layer.
 - Maps Global symbols onto LONG integers
 - No user C code
 - Scanned at 5Hz

Example DM screen

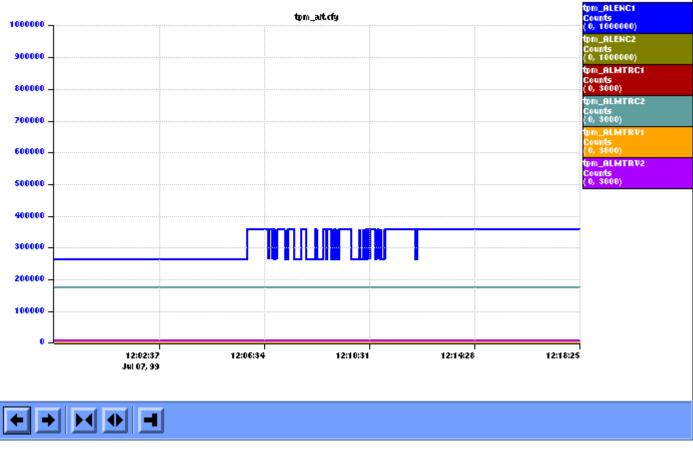
ALTITUDE AXIS

Encoder 1: 267541 Counts

Encoder 2: 0 Counts

Voltage 1: 9 Counts

Current 1: 525 Counts

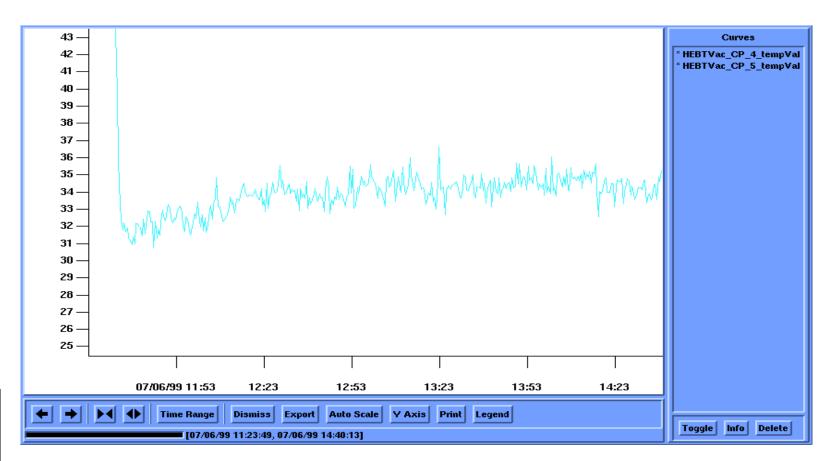

Voltage 2: 19 Counts

Current 2: 523 Counts

Example StripTool screen

Discussion - 1

- While creation of the custom channel access server required significant C++ work, the real-time application development required only **four hours** to determine the hooks into the existing TPM software, create the SUBROUTINE record support, construct the database, and the initial displays.
- The TPM status records can be enhanced by defining upper and lower operating ranges and alarm limits and by creating a special device support layer instead of reliance on global vxWorks symbols.
- Other EPICS client applications can be installed at APO, including the alarm handler, the data archiver, and the X-windows based archive viewer.



Discussion - 2

- After review of the custom channel access server application, the proposal is to make use of the modular design of the data archive viewer, XARR.
- XARR is presently used for retrieval and display of archived parameters. XARR also supports printing of displays and exporting into ASCII files. At LEDA/APT the accelerator physicists process these files using Excel.
- XARR can retrieve data from a variety of data sources, all of which described by classes derived from a fundamental data source base class. It would be relatively simple to create a data source class for TPM data.

XARR - Archive viewer

